CHROMATOGRAPHIC RESOLUTION OF TRIS (ACETYLACETONATO) -COBALT(III) ON A A-TRIS(1,10-PHENANTHROLINE)NICKEL(II) MONTMORILLONITE COLUMN

Akihiko YAMAGISHI, Ryuichiro OHNISHI*, and Mitsuyuki SOMA Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060 *Research Institute for Catalysis, Hokkaido University, Sapporo 060 † Institute for Environmental Studies, Tsukuba, Ibaraki 305

Tris(acetylacetonato)Co(III) was partially resolved on a 2.5 \times 1.5 cm o.d. chromatographic column of Δ -tris(1,10phenanthroline) Ni(II) montmorillonite at 2°C. The percentage resolution of A-tris(acetylacetonato)Co(III) was attained to be 36% for the first eluted fraction.

Although a clay itself has no asymmetric character at its binding site, there exists a rigorous steric regulation for the stacking of a bulky metal chelate over the clay surface. For example, tris(1,10-phenathroline)iron(II) ion is always adsorbed as a racemic pair on a colloidal clay. 1,2) As a result, the optical purity of a partially resolved solution improves by adding this clay, when the excess racemic mixture is eliminated as a clay-metal chelate adduct. 1,2) These facts have motivated us to try the chromatographic resolution of a metal chelate, using the column of a clay-metal chelate adduct. We report here that Δ -tris(1,10phenanthroline) nickel(II) montmorillonite $(\Delta - [Ni(phen)_3]^{2+} \cdot 2M^{-})$ has demonstrated the outstanding capability to resolve tris(acetylacetonato)cobalt(III)([Co(acac)]) in the liquid column chromatography. The separation of the complex has been a serious experimental difficulty, because it is a molecular complex and does not interact with any resolving agent.

7.0 g of sodium montmorillonite (Na⁺M⁻) (Kunipia-G, Kunimine Co. Ind., Japan) was dispersed in 400 ml of distilled water. The solution contained 8.0×10^{-3} equivalent of cation-exchange site. 3) 50 ml of aqueous 4.0×10^{-3} mole $\Delta-$ [Ni(phen)3]Cl2 was added to the clay solution under stirring. After centrifuging the solution, the clay-metal chelate adduct was collected and washed with methanol. The dried pinkish solid was ground into fine powders (~9g). A slurry of 1.0 g of the solid in water was poured into a glass tubing to form a chromatographic column of 2.5 \times 1.5 cm od. In order to prevent the racemization of Δ -[Ni(phen)₃]²⁺, the column was cooled at 2°C.

5 ml of 2.4 \times 10⁻³ M [Co(acac)₃] was placed on the column and eluted with distilled water at a flow rate of 0.2 - 0.3 ml/min. An eluate was collected at every 3 ml and analyzed from the electronic and optical rotatory dispersion (ORD) spectra. The concentration of [Co(acac)] was determined by using the molar extinction coefficient of 150 at 600 nm.

The water eluate gave the electronic spectrum which was identical with that of $[\text{Co(acac)}_3]$ in 340 - 700 nm. $^{4,6})$ About 60 ml of water was flowed until the concentration of eluted $[\text{Co(acac)}_3]$ became lower than the detection limit $(2 \times 10^{-5} \text{M})$. Thereafter the rest of the bound metal chelate was eluted by methanol. The methanol eluate was collected to a single solution ($^{\circ}$ 30 ml).

Figure 1 shows the plots of the concentration of $[\text{Co(acac)}_3]$ and the molecular rotation at 530 nm, [M], against the elution volume. The vertical axis was also scaled in terms of the percentage resolution defined by $[\text{M}]/[\text{M}]_0$ with $[\text{M}]_0 = -2.9 \times 10^4$ for $\Lambda\text{-}[\text{Co(acac)}_3].^4$ The last plot in the figure was for the methanol eluate, using $[\text{M}]_0 = +2.9 \times 10^4$ for $\Delta\text{-}[\text{Co(acac)}_3].^4$

Most strikingly the water eluate always contained $\Lambda\text{-}[\text{Co(acac)}_3]$ as excess enantiomer. A greater part of $\Delta\text{-}[\text{Co(acac)}_3]$ was bound with the clay column so strongly that it was recovered only by methanol solvent. Such a distinct separation has never been achieved, when other chromatographic columns were used for this kind of metal complexes. Accordingly the percentage resolution attained a value by far better than the reported one; 36% for $\Lambda\text{-}[\text{Co(acac)}_3]$ which was two times better than the best one reported (19.6%). The results are even more surprising, when one compares the length of the present column (2.5 cm) with the reported ones (60 - 200 cm).

The water eluate was collected to a single solution and was passed through the same column again. The resultant eluate (~ 10 ml) thus obtained contained 86% of Λ -[Co(acac)₃] out of the total concentration of 4.0 \times 10⁻⁴ M (72% resolution). Thus the column was proved to be effective for repeated separations.

The present enantiometric affinity of $[\text{Co(acac)}_3]$ toward Δ - $[\text{Ni(phen)}_3]^{2+} \cdot 2\text{M}^{-}$ is completely contrary to the previous observation, in which Λ - $[\text{Fe(phen)}_3]^{2+}$ or Λ - $[\text{Fe(bipy)}_3]^{2+}$ (bipy = 2,2'-bipyridine) is adsorbed preferentially with Δ - $[\text{Ni(phen)}_3]^{2+}$ on a colloidal clay. From the transient electric dichroism measurements, $[\text{Fe(phen)}_3]^{2+}$ orients its C_3 axis perpendicular to the clay surface. When this type of chelate covers a clay surface in such an lignment, the racemic body leads to the two-fold denser degree of stacking than the single enantiomer. The adsorption as a racemic pair is therefore ascribed to the preferable stacking of Λ - $[\text{Fe(phen)}_3]^{2+}$ (or Λ - $[\text{Fe(bipy)}_3]^{2+}$) by the side of adsorbed Δ - $[\text{Ni(phen)}_3]^{2+}$.

The reasons for the preferential adsorption of the one enantiomer in the present system were investigated by adding colloidal $\operatorname{Na}^+\operatorname{M}^+$ to a solution of $[\operatorname{Co}(\operatorname{acac})_3]$ and $\Delta-[\operatorname{Ni}(\operatorname{phen})_3](\operatorname{ClO}_4)_2$. As is given in Table 1, the following points are concluded; (i) $\operatorname{No}[\operatorname{Co}(\operatorname{acac})_3]$ was adsorbed on a clay in the absence of $[\operatorname{Ni}(\operatorname{phen})_3]^{2+}$. (ii) $\Lambda-[\operatorname{Co}(\operatorname{acac})_3]$ was adsorbed preferentially, when the ratio of $[\operatorname{Ni}(\operatorname{phen})_3]^{2+}$ to $[\operatorname{Na}^+\operatorname{M}^-]$ was small. (iii) $\Delta-[\operatorname{Co}(\operatorname{acac})_3]$ was adsorbed preferentially, when the ratio was large. These results imply that, when the whole cation-exchange sites of M^- are preoccupied by $\Delta-[\operatorname{Ni}(\operatorname{phen})_3]^{2+}$, $[\operatorname{Co}(\operatorname{acac})_3]$ does not lie on a montmorillonite surface directly, but it is $\operatorname{located}$ over the adsorbed layer of nickel chelates. If $[\operatorname{Co}(\operatorname{acac})_3]$ takes such a position with its C_3 axis perpendicular to the surface, the Δ -isomer is more stably stacked with $\Delta-[\operatorname{Ni}(\operatorname{phen})_3]^{2+}$ than the Λ -isomer. This explains why $\Delta-[\operatorname{Co}(\operatorname{acac})_3]$ is bound with the present column more strongly than $\Lambda-[\operatorname{Co}(\operatorname{acac})_3]$.

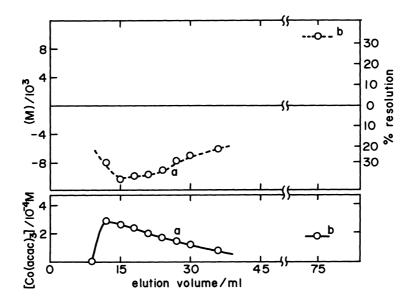


Figure 1. The elution curve of $[Co(acac)_3]$. The curve <u>a</u> is the elution curve for water solvent. The plot <u>b</u> is the eluate for methanol solvent. The solid curve (lower) denotes the concentration of $[Co(acac)_3]$ in an eluate, and the dotted curve (upper) the molecular rotation at 530 nm.

A clay column is inexpensive and easy to prepare. Moreover, the present method has a vast versatility in the sense that various kinds of metal complexes are able to be adsorbed at a cation-exchange site. For example, if asymmetric ligands are introduced in the pre-adsorbed metal chelates, the resultant column may be able to resolve not only organo-metallic compounds as described above but also small organic compounds.

TABLE 1. Adsorption of [Co(acac) $_3$] on sodium montmorillonite (Na $^+$ M $^-$) in the presence of Δ -[Ni(phen) $_3$](ClO $_4$) $_2$

Run	$\Delta = [Ni (phen)_{3}]^{2+}/$ $10^{-4} m^{a}$	adsorbed Co(acac) ₃ / 10 ⁻⁴ M ^{b)}	excessive isomer in the solvent/ 10^{-5} M ^C)
1	0.0	less than 0.2	none
2	1.4	0.5	0.4 (\(\(\(\) \)
3	2.9	0.9	0.8 (△)
4	4.0	2.1	1.5 (A)
5	5.8	2.5	8.0 (1)

- a) The initial amount of Δ -[Ni(phen)₃](ClO₄)₂, which was present in a solution of 1.42 × 10⁻³M [Co(acac)₃] and 1.1 × 10⁻³M Na⁺M⁻.
- b) The adsorbed amount of [Co(acac)₃] on a clay, which was obtained by centriguging the solution.
- c) The excessive optical isomer of $[Co(acac)_3]$, which was present in a supernatant solution.

References

- 1) A. Yamagishi and M. Soma, J. Am. Chem. Soc., <u>103</u>, 4640 (1981).
- 2) A. Yamagishi and M. Soma, J. Chem. Soc., Chem. Commun., 359, (1981).
- 3) The cation-exchange site was titrated against acridine orange hydrochloride. See A. Yamagishi and M. Soma, J. Phys. Chem., <u>85</u> (in press) (1981).
- 4) J. P. Collman, R. P. Blair, R. L. Marshall, and L. Slade, Inorg. Chem., 2, 576 (1963).
- 5) R. C. Fay, A. Y. Girgis, and U. Klabunde, J. Am. Chem. Soc., 92, 7056 (1970).
- 6) R. C. Fay and R. B. Von Dreele, J. Am. Chem. Soc., 93, 4936 (1971).
- 7) M. Yamamoto, E. Iwamoto, A. Kozawa, K. Takemoto, Y. Yamamoto, and A. Tatehata, Inorg. Nucl. Chem. Lett., <u>16</u>, 71 (1981).
- 8) Under the experimental conditions where the column kept below 2°C, similar resolution efficiencies were obtained on the column made from a different lot of Na⁺M⁻ and for repeated use of the same column.
- 9) Measurements were performed with the instrument described in A. Yamagishi, Biopolymers, 20, 201 (1981).

(Received November 5, 1981)